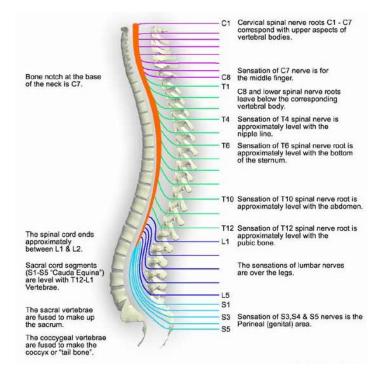


Spinal Nerves

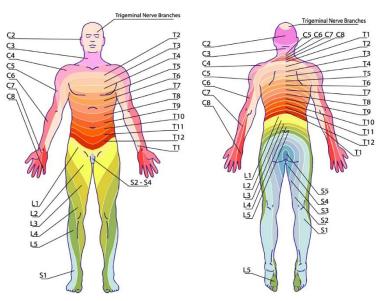

Anatomy of the Spinal Cord

To discuss the spinal nerves and how they work we first have to understand the anatomy of the spinal cord and column. The spinal column supports the head and protects the spinal cord, which is attached to the brain and extends down the centre of the back. It is approximately the width of a human finger. Along with the brain it forms the central nervous system. It is made up of millions of nerve fibres which transmit electrical signals to and from the limbs, trunk and organs. The spinal column is made up of 33 vertebrae which are divided up as follows:

Cervical	Neck	7	Supply movement and feeling to the arms, neck and upper trunk	
Thoracic	Upper Back	12	Control the muscles and organs of the chest and abdomen	
Lumbar	Lower Back	5	Supply the legs	
Sacral	Sacrum	5 (Fused)	The bladder, bowel and sexual organs	

Spinal Cord Numbering

Spinal nerves carry information to and from different segments along the spinal cord, and are numbered according to their location, similar to the numbering of the vertebrae. There are 31 pairs of spinal nerves, along the spinal cord, they exit the spinal column through holes in the vertebrae called foramen.


The diagram to the left shows clearly the spinal cord and where the spinal nerves exit in relation to the vertebrae. You will notice that the cervical nerves exit above the vertebral body, and then at C8 they exit below. This allows for one more cervical spinal nerve, C8, which does not have an equivalent numbered vertebral body. The neck has seven vertebral bodies.

Dermatomes and Myotomes

A dermatome is an area of skin supplied by a single spinal nerve whilst a myotome is a group of muscles supplied by a single spinal nerve.

Irritation or injury to the spinal nerve root through conditions such as spinal stenosis and disc herniation can lead to a sensory deficit in the distribution of the dermatome, or a motor deficit in the distribution of the myotome.

The areas innervated by each nerve root are outlined in the diagram to the right.

Radiculopathy

Radicular symptoms occur because of irritation of a nerve root. These symptoms can include pain, numbness and tingling.

The table below outlines common radicular syndromes.

Disc Level	Nerve Root	Motor Deficit	Sensory Deficit	Reflex Compromise	
Lumbar					
L3-4	L4	Quadriceps	Anterolateral thigh Anterior knee Medial leg and foot	Knee	
L4-5	L5	Extensor hallucis longus	Lateral thigh Anterolateral leg Middorsal foot	Medial hamstrings	
L5-S1	S1	Ankle plantar flexors	Posterior leg Lateral foot	Ankle	
Cervical					
C4-5	C5	Deltoid Biceps	Anterolateral shoulder and arm	Biceps	
C5-6	C6	Wrist extensors Biceps	Lateral forearm and hand Thumb	Brachioradialis Pronator teres	
C6-7	C7	Wrist flexors Triceps Finger extensors	Middle finger	Triceps	
C7-T1	C8	Finger flexors Hand intrinsics	Medial forearm and hand, ring and little fingers	None	
T1-T2	T1	Hand intrinsics	Medial forearm	None	

Neurologists and neurosurgeons are not the only experts in this field. Orthopaedic surgeons have a deep level of understanding of spinal nerves necessary for them to assess spinal injuries.

LexiMed Consultants

- **Dr Noel Saines** Neurologist
- **" Dr Michael Redmond** Neurosurgeon
- **Dr David Shooter** Orthopaedic Surgeon
- **Dr Michael South** Orthopaedic Surgeon
- **Dr Bruce Love** Orthopaedic Surgeon

- Dr Leigh Atkinson
 Neurosurgeon
- **Dr David Ness** Orthopaedic Surgeon
- **Dr Kingsley Foote** Orthopaedic Surgeon
- **Dr Ross Kennedy** Orthopaedic Surgeon
- **" Dr John Sowby** Occupational Physician

- **Dr John Baker** Neurourgeon
- **" Dr Peter Winstanley** Orthopaedic Surgeon
- **Dr Warren Todd** Orthopaedic Surgeon
- **Dr Gregory Bookless** Orthopaedic Surgeon

Reference: The American Medical Association's Guides to the Evaluation of Permanent Impairment, 5th Edition, Chapter 15